If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2+6p-81=0
a = 1; b = 6; c = -81;
Δ = b2-4ac
Δ = 62-4·1·(-81)
Δ = 360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{360}=\sqrt{36*10}=\sqrt{36}*\sqrt{10}=6\sqrt{10}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{10}}{2*1}=\frac{-6-6\sqrt{10}}{2} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{10}}{2*1}=\frac{-6+6\sqrt{10}}{2} $
| 7/9=x/11 | | 7(5y-2)+4(2y+6)=25(3y+2)-16y | | 7(5y−2)+4(2y+6)=25(3y+2)−16y | | -3x=134-5x | | 2(3x=+3)=18 | | 4/4x=28 | | Y^2+30=11y | | 32°+(9w-5)°=90 | | 4^1-9x=3x | | 3(4x–5)=6x+15 | | (3/4)n-8=n24 | | –3(f−6)=–9 | | 1152=(18-w)(2w+4)w | | (x+15))(2x-4)=0 | | 8^X^2-120=64^x | | 3(2x-4)=-6x-7 | | 7(5y-2)+6(2y+6)=25(3y+2)-16y | | 9x+81=(2x+2)*2x+29 | | 5x+1/x-64=0 | | (x+5)x2=14 | | 1/2c*13=3c+48 | | F(x)=4x2-2x-5 | | Y=60(1.71)x | | 2(13x-6)=21x+8+143 | | 14(n=7 | | 15+2n=3(1+2n) | | 4=3/f | | 10(x+3)=-8+38 | | 33=9(x–2)+15 | | 6x-3x+18=9(x-4) | | 2400-x=1700 | | 12.5÷y=1.25 |